Technology Thoughts

Jason Glenn, NASA GSFC AAS Special Session, Jan. 12, 2021

What enabling technologies do we need for the infrared science of the 2020s and 2030s?

● GEP?

Origins?

Note: Several of these dates are approximate.

IR Science Interest Group

237th AAS Meeting January 12, 2021

Additional Resources

- NASA Astrophysics Technology Gap Priorities
 (apd440.gsfc.nasa.gov/tech_gap_priorities.html)
- 2. "Far-IR instrumentation and technology development for the next decade", Farrah et al., JATIS (2019).

IR Science Interest Group 237th AAS Meeting January 12, 2021

Essential: Detectors and Readouts

Future observatories (OST, GEP, MIRECLE, SOFIA, balloons) will be limited by detector **sensitivities** and **array sizes** and power demands of **readouts**.

 $\lambda \leq 25 \ \mu m$: Si:As BIBs and IBCs will become <u>unavailable</u> if a new mission does not require them soon.

 $10 \ \mu m \le \lambda \le 3 \ mm$: TESs, KIDs, and potentially others show the necessary potential but require sustained funding.

• NEPs: 10x - 100x improvement*

Array sizes: 10x larger

• Architectures: $10 \,\mu\text{m} - 50 \,\mu\text{m}$

Readouts: Large arrays require low power per channel → <u>space</u>-<u>qualified</u> small transistor node technology.

Readouts: Development is driven by industry, but implementation for astronomy has benefitted enormously from partnerships with universities (i.e., CASPER and ASU).

^{*}See attached C.M. Bradford NEP slide.

Other Crucial Technologies

Optics and Filters:

Research into **materials** and **micromachining** to minimize transmission and reflection losses, especially at mid-IR wavelengths.

Cryocoolers:

Compact, economical solar-powered **cryocoolers** (4 K) and **refrigerators** (<1 K) to enable MIDEX and larger mission and smaller observatories and balloons.

<u>Untapped</u>

<u>Potential</u>:

Getting to ~1 K telescope optics on balloons.

Galaxy Evolution Probe

A mid-to-far-IR surveyor

- Extragalactic and Galactic science
- Hyperspectral $R \sim 10$ imaging: $10 400 \ \mu m$
- R = 200 long-slit spectroscopy: $24 193 \mu m$
- Deep and wide surveys
- New technologies:
 - 25k x2 KIDs
 - Continuously linear-variable filters

For clarity, not all surveys are shown.

Recommendations for Community Advocacy Addressing the major challenges

- 1. Sustained detector technology development funding
- 2. Enhanced support for **balloon** science and technology
- 3. Drive innovation with faster SOFIA new instrument cycles
- 4. Invitation: **GEP** science case development pending Decadal Origins and Probes outcome
- **5. Encourage** young people and members of historically under-represented groups to pursue careers in infrared instrumentation: *they are our future*.

Detectors Sensitivities

Detector **sensitivities** generally need to improve **10x – 100x** and **array sizes** need to increase **10x**.

 $10 - 50 \mu m$ detectors with good optical coupling need to be demonstrated.

Figure: C.M. Bradford

Image Credits

https://spherex.caltech.edu/Science.html

https://jwst-docs.stsci.edu/mid-infrared-instrument/miri-instrumentation/miri-

detector-overview

The Experiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM),

P.A.R. Ade, et al., PI Eric Switzer, *JLTP*, 199, 1027 – 1037 (2020).